Rev. 03T3.30 20230817

40G QSFP+ SR4 Transceiver Hot Pluggable, MPO / MTP, 850nm VCSEL, MMF 300M, DDM

Part Number: FQFP-I9-M85-X3D

Overview

FQFP-I9-M85-X3D is a Four-Channel Parallel Fibers QSFP+ transceiver for 40GbE and InfiniBand QDR, application especially in Data Center & Storage networks. The QSFP full-duplex optical module with MPO-12 receptacle offers 4 independent transmitter and receiver channels each capable of 10.3125Gbps operation for an aggregate data rate of 41.25Gbps up to MMF OM3 300m optical links.

Applications

- 40Gb Ethernet
- OTN OTU3 @43.01G, OTU3e2 @44.58G
- Breakout to 4 x 10GBASE-SR Ethernet
- InfiniBand QDR interconnects
- Data Center & Storage
- Datacom / Telecom Switch & Router

Features

- Compliant with IEEE802.3ba 40GBASE-SR4
- Compliant with SFF-8436 QSFP+ MSA
- Support InfiniBand QDR
- 4 independent full-duplex channels
- Up to 11.2Gbps data rate per channel
- Hot Pluggable
- 850nm VCSEL array transmitter
- MPO-12 receptacle connector
- 2-wire interface for management and diagnostic monitor compliant with SFF-8436, SFF-8636
- Single 3.3V power supply
- Link distance 300m over MM OM3 fiber,
- 400m over MM OM4 fiber
- RoHS Compliant

Laser Safety

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

1

Rev. 03T3.30_20230817

Absolute Maximum Ratings

TEL+886-2-2898-3830

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	T _{ST}	-10	+85	°C
Storage Relative Humidity	RH	5	85	%
Supply Voltage	Vcc3	-0.5	+3.6	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temperature	TOP	0	-	+70	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Supply Current	Icc			450	mA
Power Consumption	Р			1.5	W
Transceiver Power-on Initialization Time				2000	ms

Rev. 03T3.30_20230817

Transmitter Electro-optical Characteristics

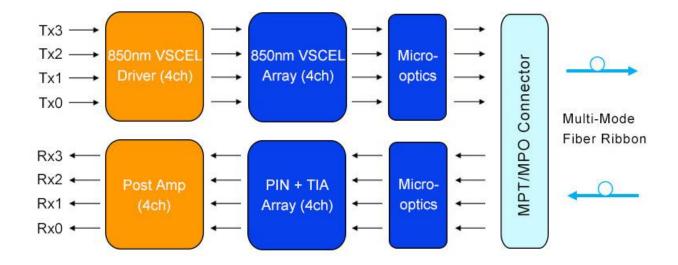
 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate, per Lane	DR	1.25	10.3125		Gb/s	
Average Optical Power, per Lane	Pavg	-6.0		+2.4	dBm	
Optical Modulation Amplitude (OMA), per Lane	Рома	-4.5		+3.0	dBm	1
Launch Power in OMA minus Transmitter and Dispersion Penalty, per Lane	OMA- TDP	-6.5			dB	1
Difference in Launch Power between any two Lanes (OMA)	Ptx,diff			4.0	dB	
Optical Center Wavelength	λc	830	850	870	nm	1
Spectral Width (RMS)	Δλ			0.40	nm	1
Optical Extinction Ratio	ER	3			dB	
Optical Eye Mask Definition { X1, X2, X3, Y1, Y2, Y3 }		{ 0.23, 0.34, 0.43, 0.27, 0.33, 0.4 }				
Average Launch Power OFF, per Lane	Poff			-30	dBm	
Differential Input Impedance	Zın	80	100	120	Ω	
Differential Data Input Swing	VIN,pp	200		1600	mV	
Logic Input Voltage - High	ViH	2.5		Vcc+0.3	V	
Logic Input Voltage - Low	VIL	GND		0.8	V	
Logic Output Voltage - High	Vон	2.4		Vcc	V	
Logic Output Voltage - Low	Vol	GND		0.4	V	

Note1: Transmitter wavelength, RMS spectral width and power need to meet the OMA minus TDP specs to guarantee link performance.

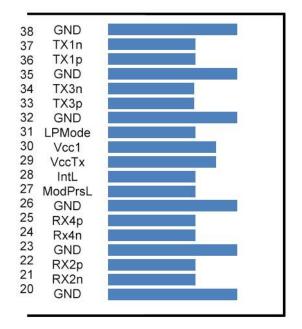
Rev. 03T3.30_20230817

Receiver Electro-optical Characteristics

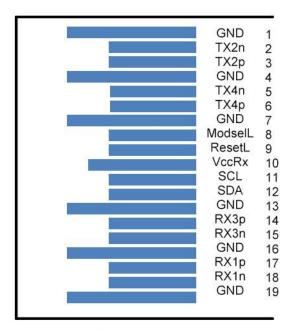

 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate, per Lane	DR	1.25	10.3125		Gb/s	
Damage Threshold, per Lane	D тн	+3.4			dBm	1
Overload, per Lane	Prx-ovl	+2.4			dBm	
Receiver Sensitivity, per Lane (OMA)	Prx-ома			-10.2	dBm	2
Optical Center Wavelength	λc	820	850	880	nm	
LOS De-Assert	LOSD			-12	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis	LOSHY	0.5			dB	
Differential Output Impedance	Zouт	80	100	120	Ω	
Differential Data Output Swing	Vout,pp	350		1000	mV	

Note1: The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.


Note2: Measured with conformance test signal at receiver input for BER= 1x10⁻¹².

Transceiver Block Diagram



Rev. 03T3.30_20230817

Pin Assignment

Module Card Edge

Top Side Viewed From Top

Bottom Side Viewed From Bottom

Pin Description

TEL+886-2-2898-3830

Pin	Logic	Name	Function / Description		
1		GND	Module Ground		
2	CML-I	TX2n	Transmitter Inverted Data Input		
3	CML-I	TX2p	Transmitter Non-Inverted Data Input		
4		GND	Module Ground		
5	CML-I	TX4n	Transmitter Inverted Data Input		
6	CML-I	TX4p	Transmitter Non-Inverted Data Input		
7		GND	Module Ground		
8	LVTLL-I	ModSelL	Module Select		
9	LVTLL-I	ResetL	Module Reset		
10		VccRx	+3.3V Power Supply Receiver		
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock		
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data		

Rev. 03T3.30_20230817

			_
13		GND	Module Ground
14	CML-O	RX3p	Receiver Non-Inverted Data Output
15	CML-O	RX3n	Receiver Inverted Data Output
16		GND	Module Ground
17	CML-O	RX1p	Receiver Non-Inverted Data Output
18	CML-O	RX1n	Receiver Inverted Data Output
19		GND	Module Ground
20		GND	Module Ground
21	CML-O	RX2n	Receiver Inverted Data Output
22	CML-O	RX2p	Receiver Non-Inverted Data Output
23		GND	Module Ground
24	CML-O	RX4n	Receiver Inverted Data Output
25	CML-O	RX4p	Receiver Non-Inverted Data Output
26		GND	Module Ground
27	LVTLL-O	ModPrsL	Module Present
28	LVTLL-O	IntL	Interrupt
29		VccTx	+3.3V Power Supply Transmitter
30		Vcc1	+3.3V Power Supply
31	LVTLL-I	LPMode	Low Power Mode
32		GND	Module Ground
33	CML-I	ТХ3р	Transmitter Non-Inverted Data Input
34	CML-I	TX3n	Transmitter Inverted Data Input
35		GND	Module Ground
36	CML-I	TX1p	Transmitter Non-Inverted Data Input
37	CML-I	TX1n	Transmitter Inverted Data Input
38		GND	Module Ground

Note1: GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground lane.

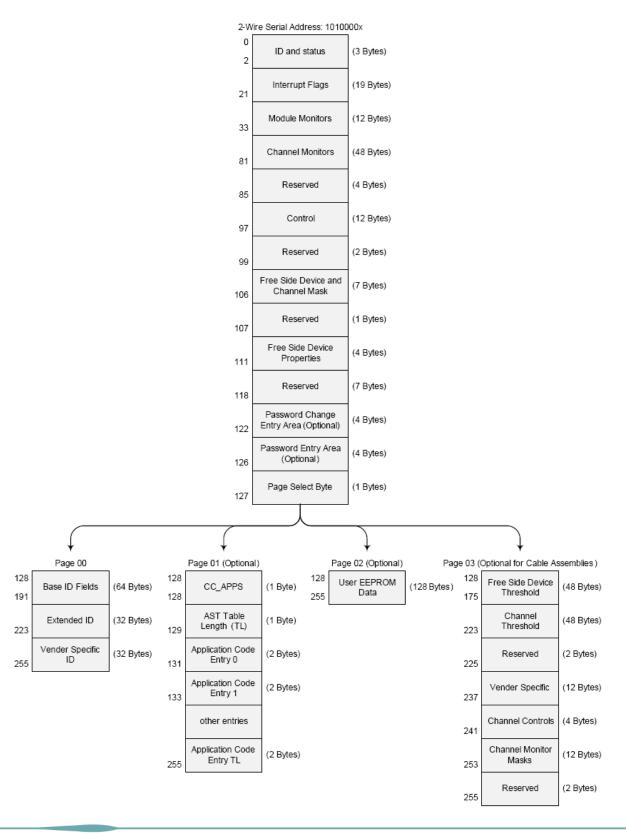
Note2: VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Rev. 03T3.30 20230817

Digital Diagnostic Functions

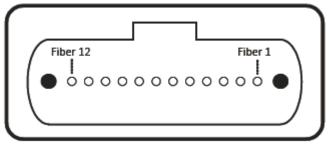
As defined by the QSFP+ MSA, Ficer's QSFP+ transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current (4-Channel)
- Transmitted optical power (4-Channel)
- Received optical power (4-Channel)
- Transceiver supply voltage


It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

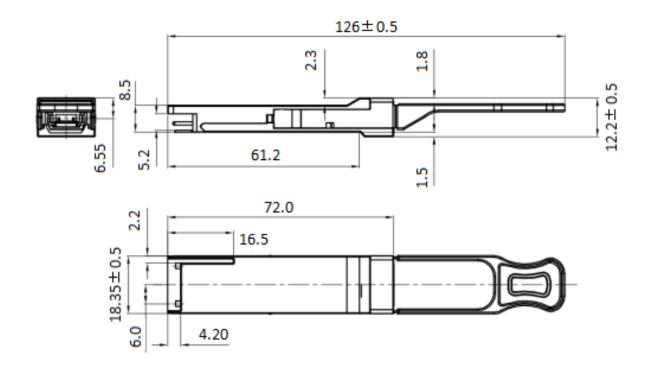
For more detailed information including memory map definitions, please see the QSFP+ MSA Specification.


Digital Diagnostic Memory Map

Rev. 03T3.30_20230817

Rev. 03T3.30_20230817

Optical Interface Lanes and Assignment


Outside view of the QSFP module MPO

Fiber #	Lane Assignment
1	Rx0
2	Rx1
3	Rx2
4	Rx3
5,6,7,8	Not used
9	Tx3
10	Tx2
11	Tx1
12	Tx0

lane assignment

Rev. 03T3.30_20230817

Mechanical Dimensions

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Ordering Information

Part No.	Tx	Rx	Link	DDM	Temp.
FQFP-I9-M85-X3D	850 nm	850 nm	MM OM3 300m MM OM4 400m	Yes	0~70°C

Note1: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.